Kalman filter variants in the closed skew normal setting

نویسندگان

  • Javad Rezaie
  • Jo Eidsvik
چکیده

The filtering problem, or dynamic data assimilation problem, is studied for linear and nonlinear systems with continuous state space and over discrete time steps. The paper presents filtering approaches based on the conjugate closed skew normal probability density. This distribution allows additional flexibility over the usual Gaussian approximations. With linear dynamic systems, the filtering distribution can now be computed in analytical form. With nonlinear dynamic systems, an ensemble-based version is proposed, fitting a closed skew normal distributions at each updating step. Numerical examples discuss various special cases of the methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixtures of skewed Kalman filters

Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scalemixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew-t distributions is obtained. Our suggested family of...

متن کامل

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

Closed and Open Loop Subspace System Identification of the Kalman Filter

Some methods for consistent closed loop subspace system identification presented in the literature are analyzed and compared to a recently published subspace algorithm for both open as well as for closed loop data, the DSR e algorithm. Some new variants of this algorithm are presented and discussed. Simulation experiments are included in order to illustrate if the algorithms are variance effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2014